Preservation of reserve intestinal epithelial stem cells following severe ischemic injury

Gonzalez LM, Stewart AS, Freund J, Kucera CR, Dekaney CM, Magness ST, Blikslager AT

Am J Physiol Gastrointest Liver Physiol. 2019 Apr 1;316(4):G482-G494.  Epub 2019 Feb 4. PMID: 30714814

Abstract

Intestinal ischemia is an abdominal emergency with a mortality rate >50%, leading to epithelial barrier loss and subsequent sepsis. Epithelial renewal and repair after injury depend on intestinal epithelial stem cells (ISC) that reside within the crypts of Lieberkühn. Two ISC populations critical to epithelial repair have been described: 1) active ISC (aISC; highly proliferative; leucine-rich-repeat-containing G protein-coupled receptor 5 positive, sex determining region Y-box 9 positive) and 2) reserve ISC [rISC; less proliferative; homeodomain only protein X (Hopx)+]. Yorkshire crossbred pigs (8-10 wk old) were subjected to 1-4 h of ischemia and 1 h of reperfusion or recovery by reversible mesenteric vascular occlusion. This study was designed to evaluate whether ISC-expressing biomarkers of aISCs or rISCs show differential resistance to ischemic injury and different contributions to the subsequent repair and regenerative responses. Our data demonstrate that, following 3-4 h ischemic injury, aISC undergo apoptosis, whereas rISC are preserved. Furthermore, these rISC are retained ex vivo in spheroids in which cell populations are enriched in the rISC biomarker Hopx. These cells appear to go on to provide a proliferative pool of cells during the recovery period. Taken together, these data indicate that Hopx+ cells are resistant to injury and are the likely source of epithelial renewal following prolonged ischemic injury. It is therefore possible that targeting reserve stem cells will lead to new therapies for patients with severe intestinal injury. NEW & NOTEWORTHY The population of reserve less-proliferative intestinal epithelial stem cells appears resistant to injury despite severe epithelial cell loss, including that of the active stem cell population, which results from prolonged mesenteric ischemia. These cells can change to an activated state and are likely indispensable to regenerative processes. Reserve stem cell targeted therapies may improve treatment and outcome of patients with ischemic disease.

IL22 Inhibits Epithelial Stem Cell Expansion in an Ileal Organoid Model

Zwarycz B, Gracz AD, Rivera KR, Williamson IA, Samsa LA, Starmer J, Daniele MA, Salter-Cid L, Zhao Q, Magness ST

Cell Mol Gastroenterol Hepatol. 2018 Jul 4;7(1):1-17. eCollection 2019. PMID: 30364840

Abstract

Crohn's disease is an inflammatory bowel disease that affects the ileum and is associated with increased cytokines. Although interleukin (IL)6, IL17, IL21, and IL22 are increased in Crohn's disease and are associated with disrupted epithelial regeneration, little is known about their effects on the intestinal stem cells (ISCs) that mediate tissue repair. We hypothesized that ILs may target ISCs and reduce ISC-driven epithelial renewal. METHODS: A screen of IL6, IL17, IL21, or IL22 was performed on ileal mouse organoids. Computational modeling was used to predict microenvironment cytokine concentrations. Organoid size, survival, proliferation, and differentiation were characterized by morphometrics, quantitative reverse-transcription polymerase chain reaction, and immunostaining on whole organoids or isolated ISCs. ISC function was assayed using serial passaging to single cells followed by organoid quantification. Single-cell RNA sequencing was used to assess Il22ra1 expression patterns in ISCs and transit-amplifying (TA) progenitors. An IL22-transgenic mouse was used to confirm the impact of increased IL22 on proliferative cells in vivo. RESULTS: High IL22 levels caused decreased ileal organoid survival, however, resistant organoids grew larger and showed increased proliferation over controls. Il22ra1 was expressed on only a subset of ISCs and TA progenitors. IL22-treated ISCs did not show appreciable differentiation defects, but ISC biomarker expression and self-renewal-associated pathway activity was reduced and accompanied by an inhibition of ISC expansion. In vivo, chronically increased IL22 levels, similar to predicted microenvironment levels, showed increases in proliferative cells in the TA zone with no increase in ISCs. CONCLUSIONS: 

Increased IL22 limits ISC expansion in favor of increased TA progenitor cell expansion.

Knockout of ClC-2 reveals critical functions of adherens junctions in colonic homeostasis and tumorigenicity

Jin Y, Ibrahim D, Magness ST, Blikslager AT

Am J Physiol Gastrointest Liver Physiol. 2018 Dec 1;315(6):G966-G979. Epub 2018 Oct 4. PMID: 30285466

Abstract

Adherens junctions (AJs), together with tight junctions (TJs), form an apical junctional complex that regulates intestinal epithelial cell-to-cell adherence and barrier homeostasis. Within the AJ, membrane-bound E-cadherin binds β-catenin, which functions as an essential intracellular signaling molecule. We have previously identified a novel protein in the region of the apical junction complex, chloride channel protein-2 (ClC-2), that we have used to study TJ regulation. In this study, we investigated the possible effects of ClC-2 on the regulation of AJs in intestinal mucosal epithelial homeostasis and tumorigenicity. Mucosal homeostasis and junctional proteins were examined in wild-type (WT) and ClC-2 knockout (KO) mice as well as associated colonoids. Tumorigenicity and AJ-associated signaling were evaluated in a murine colitis-associated tumor model and in a colorectal cancer cell line (HT-29). Colonic tissues from ClC-2 KO mice had altered ultrastructural morphology of intercellular junctions with reduced colonocyte differentiation, whereas jejunal tissues had minimal changes. Colonic crypts from ClC-2 KO mice had significantly higher numbers of less-differentiated forms of colonoids compared with WT. Furthermore, the absence of ClC-2 resulted in redistribution of AJ proteins and increased β-catenin activity. Downregulation of ClC-2 in colorectal cells resulted in significant increases in proliferation associated with disruption of AJs. Colitis-associated tumors in ClC-2 KO mice were significantly increased, associated with β-catenin transcription factor activation. The absence of ClC-2 results in less differentiated colonic crypts and increased tumorigenicity associated with colitis via dysregulation of AJ proteins and activation of β-catenin-associated signaling. NEW & NOTEWORTHY Disruption of adherens junctions in the absence of chloride channel protein-2 revealed critical functions of these junctional structures, including maintenance of colonic homeostasis and differentiation as well as driving tumorigenicity by regulating β-catenin signaling.

Reserve Stem Cells in Intestinal Homeostasis and Injury

Bankaitis ED, Ha A, Kuo CJ, Magness ST

Gastroenterology. 2018 Nov;155(5):1348-1361.  Epub 2018 Aug 15. Review. PMID: 30118745

Abstract

Renewal of the intestinal epithelium occurs approximately every week and requires a careful balance between cell proliferation and differentiation to maintain proper lineage ratios and support absorptive, secretory, and barrier functions. We review models used to study the mechanisms by which intestinal stem cells (ISCs) fuel the rapid turnover of the epithelium during homeostasis and might support epithelial regeneration after injury. In anatomically defined zones of the crypt stem cell niche, phenotypically distinct active and reserve ISC populations are believed to support homeostatic epithelial renewal and injury-induced regeneration, respectively. However, other cell types previously thought to be committed to differentiated states might also have ISC activity and participate in regeneration. Efforts are underway to reconcile the proposed relatively strict hierarchical relationships between reserve and active ISC pools and their differentiated progeny; findings from models provide evidence for phenotypic plasticity that is common among many if not all crypt-resident intestinal epithelial cells. We discuss the challenges to consensus on ISC nomenclature, technical considerations, and limitations inherent to methodologies used to define reserve ISCs, and the need for standardized metrics to quantify and compare the relative contributions of different epithelial cell types to homeostatic turnover and post-injury regeneration. Increasing our understanding of the high-resolution genetic and epigenetic mechanisms that regulate reserve ISC function and cell plasticity will help refine these models and could affect approaches to promote tissue regeneration after intestinal injury.

SOX9 Maintains Reserve Stem Cells and Preserves Radio-resistance in Mouse Small Intestine.

 

Roche KC, Gracz AD, Liu XF, Newton V, Akiyama H, Magness ST

Gastroenterology. 2015 Nov;149(6):1553-1563. Epub 2015 Jul 11. PMID: 26170137

BACKGROUND & AIMS: Reserve intestinal stem cells (rISCs) are quiescent/slowly cycling under homeostatic conditions, allowing for their identification with label-retention assays. rISCs mediate epithelial regeneration after tissue damage by converting to actively proliferating stem cells (aISCs) that self renew and demonstrate multipotency, which are defining properties of stem cells. Little is known about the genetic mechanisms that regulate the production and maintenance of rISCs. High expression levels of the transcription factor Sox9 (Sox9(high)) are associated with rISCs. This study investigates the role of SOX9 in regulating the rISC state. METHODS: We used fluorescence-activated cell sorting to isolate cells defined as aISCs (Lgr5(high)) and rISCs (Sox9(high)) from Lgr5(EGFP) and Sox9(EGFP) reporter mice. Expression of additional markers associated with active and reserve ISCs were assessed in Lgr5(high) and Sox9(high) populations by single-cell gene expression analyses. We used label-retention assays to identify whether Sox9(high) cells were label-retatining cells (LRCs). Lineage-tracing experiments were performed in Sox9-CreERT2 mice to measure the stem cell capacities and radioresistance of Sox9-expressing cells. Conditional SOX9 knockout mice and inducible-conditional SOX9 knockout mice were used to determine whether SOX9 was required to maintain LRCs and rISC function. RESULTS:  Lgr5(high) and a subset of crypt-based Sox9(high) cells co-express markers of aISC and rISC (Lgr5, Bmi1, Lrig1, and Hopx). LRCs express high levels of Sox9 and are lost in SOX9-knockout mice. SOX9 is required for epithelial regeneration after high-dose irradiation. Crypts from SOX9-knockout mice have increased sensitivity to radiation, compared with control mice, which could not be attributed to impaired cell-cycle arrest or DNA repair. CONCLUSIONS: SOX9 limits proliferation in LRCs and imparts radiation resistance to rISCs in mice.

IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations

Van Landeghem L, Santoro MA, Mah AT, Krebs AE, Dehmer JJ, McNaughton KK, Helmrath MA, Magness ST, Lund PK

FASEB J. 2015 Jul;29(7):2828-42.  Epub 2016 Jun 16.   PMID: 25837582

Abstract

Insulin-like growth factor 1 (IGF1) has potent trophic effects on normal or injured intestinal epithelium, but specific effects on intestinal stem cells (ISCs) are undefined. We used Sox9-enhanced green fluorescent protein (EGFP) reporter mice that permit analyses of both actively cycling ISCs (Sox9-EGFP(Low)) and reserve/facultative ISCs (Sox9-EGFP(High)) to study IGF1 action on ISCs in normal intestine or during crypt regeneration after high-dose radiation-induced injury. We hypothesized that IGF1 differentially regulates proliferation and gene expression in actively cycling and reserve/facultative ISCs. IGF1 was delivered for 5 days using subcutaneously implanted mini-pumps in uninjured mice or after 14 Gy abdominal radiation. ISC numbers, proliferation, and transcriptome were assessed. IGF1 increased epithelial growth in nonirradiated mice and enhanced crypt regeneration after radiation. In uninjured and regenerating intestines, IGF1 increased total numbers of Sox9-EGFP(Low) ISCs and percentage of these cells in M-phase. IGF1 increased percentages of Sox9-EGFP(High) ISCs in S-phase but did not expand this population. Microarray revealed that IGF1 activated distinct gene expression signatures in the 2 Sox9-EGFP ISC populations. In vitro IGF1 enhanced enteroid formation by Sox9-EGFP(High) facultative ISCs but not Sox9-EGFP(Low) actively cycling ISCs. Our data provide new evidence that IGF1 activates 2 ISC populations via distinct regulatory pathways to promote growth of normal intestinal epithelium and crypt regeneration after irradiation.

Defining Hierarchies of Stemness in the Intestine: Evidence from Biomarkers and Regulatoy Pathways

 

Gracz AD, Magness ST

Am J Physiol Gastrointest Liver Physiol. 2014 Aug 1;307(3):G260-73. Epub 2014 Jun 12. Review  PMID: 24924746

Abstract

For decades, the rapid proliferation and well-defined cellular lineages of the small intestinal epithelium have driven an interest in the biology of the intestinal stem cells (ISCs) and progenitors that produce the functional cells of the epithelium. Recent and significant advances in ISC biomarker discovery have established the small intestinal epithelium as a powerful model system for studying general paradigms in somatic stem cell biology, and facilitated elegant genetic and functional studies of stemness in the intestine. However, this newfound wealth of ISC biomarkers raises important questions of marker specificity. Furthermore, the ISC field must now begin to reconcile biomarker status with functional stemness, a challenge that is made more complex by emerging evidence that cellular hierarchies in the intestinal epithelium are more plastic than previously imagined, with some progenitor populations capable of dedifferentiating and functioning as ISCs following damage. In this review, we discuss the state of the ISC field in terms of biomarkers, tissue dynamics, and cellular hierarchies, and how these processes might be informed by earlier studies into signaling networks in the small intestine.

Impact of diet-induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that requires insulin/IGF1

 

Mah AT, Van Landeghem L, Gavin HE, Magness ST, Lund PK

Endocrinology. 2014 Sep;155(9):3302-14. Epub 2014 Jun 10. PMID: 24914941

Abstract

It is well established that reduced nutrient intake decreases intestinal epithelial mass and crypt proliferation. Recent findings in model organisms and rodents indicate that these changes impact intestinal stem cells (ISC). In contrast, little is known about the impact of diet-induced obesity (DIO), a model of excess nutrient intake on ISC. We used a Sox9-EGFP reporter mouse to test the hypothesis that an adaptive response to DIO or associated hyperinsulinemia involves targeted expansion and hyperproliferation of ISC. The Sox9-EGFP reporter mouse allows study and isolation of ISC, and progenitors and differentiated lineages based on different Sox9-EGFP expression levels. Sox9-EGFP mice were fed high fat diet for 20 weeks to induce DIO and compared with littermate controls fed low fat rodent chow. Histology, fluorescence activated cell sorting (FACS) and mRNA analysis measured impact of DIO on jejunal crypt-villus morphometry, numbers and proliferation of different Sox9-EGFP cell populations and gene expression. An in vitro culture assay directly assessed functional capacity of isolated ISC. DIO mice exhibited significant increases in body weight and plasma glucose and insulin levels, indicative of reduced insulin sensitivity. DIO mice also displayed increases in circulating insulin-like growth factor 1 (IGF1) and intestinal Igf1 mRNA. DIO mice had increased villus height and crypt density but decreased intestinal length. DIO resulted in a selective expansion of Sox9-EGFPLow ISC and numbers of ISC in S-phase, and ISC expansion correlated with plasma insulin levels. In vitro, ISCs isolated from DIO mice formed fewer enteroids in standard 3D Matrigel culture compared to controls,indicative of impaired ISC function. This decrease in enteroid formation in ISCs from DIO mice was rescued when insulin, IGF1 or both were added. We conclude that DIO induces specific increases in ISC and ISC hyperproliferation in vivo, but acquired dependence on insulin or IGF1 for intrinsic survival and growth.

Restriction of intestinal stem cell expansion and the regenerative response by YAP

 

Barry ER, Morikawa T, Butler BL, Shrestha K, de la Rosa R, Yan KS, Fuchs CS, Magness ST, Smits R, Ogino S, Kuo CJ, Camargo FD

Nature. 2013 Jan 3;493(7430):106-10. Epub 2012 Nov 25. PMID: 23178811

Abstract

A remarkable feature of regenerative processes is their ability to halt proliferation once an organ's structure has been restored. The Wnt signalling pathway is the major driving force for homeostatic self-renewal and regeneration in the mammalian intestine. However, the mechanisms that counterbalance Wnt-driven proliferation are poorly understood. Here we demonstrate in mice and humans that yes-associated protein 1 (YAP; also known as YAP1)--a protein known for its powerful growth-inducing and oncogenic properties--has an unexpected growth-suppressive function, restricting Wnt signals during intestinal regeneration. Transgenic expression of YAP reduces Wnt target gene expression and results in the rapid loss of intestinal crypts. In addition, loss of YAP results in Wnt hypersensitivity during regeneration, leading to hyperplasia, expansion of intestinal stem cells and niche cells, and formation of ectopic crypts and microadenomas. We find that cytoplasmic YAP restricts elevated Wnt signalling independently of the AXIN-APC-GSK-3β complex partly by limiting the activity of dishevelled (DVL). DVL signals in the nucleus of intestinal stem cells, and its forced expression leads to enhanced Wnt signalling in crypts. YAP dampens Wnt signals by restricting DVL nuclear translocation during regenerative growth. Finally, we provide evidence that YAP is silenced in a subset of highly aggressive and undifferentiated human colorectal carcinomas, and that its expression can restrict the growth of colorectal carcinoma xenografts. Collectively, our work describes a novel mechanistic paradigm for how proliferative signals are counterbalanced in regenerating tissues. Additionally, our findings have important implications for the targeting of YAP in human malignancies.

Mucosal healing and fibrosis after acute or chronic inflammation in wild type FVB-N mice and C57BL6 procollagen 1(I)-promoter-GFP reporter mice

Ding S, Walton KLW, Blue RE, MacNaughton K, Magness ST, Lund PK

PLoS One. 2010 Aug 16;5(8):e12191. PMID: 22880035 

Abstract

Injury and intestinal inflammation trigger wound healing responses that can restore mucosal architecture but if chronic, can promote intestinal fibrosis. Intestinal fibrosis is a major complication of Crohn's disease. The cellular and molecular basis of mucosal healing and intestinal fibrosis are not well defined and better understanding requires well characterized mouse models. Methods: FVB-N wild type mice and C57BL6 procollagen α1(I)-GFP reporter mice were given one (DSS1) or two (DSS2) cycles of 3% DSS (5 days/cycle) followed by 7 days recovery. Histological scoring of inflammation and fibrosis were performed at DSS1, DSS1+3, DSS1+7, DSS2, DSS2+3 and DSS2+7. Procollagen α1(I)-GFP activation was assessed in DSS and also TNBS models by whole colon GFP imaging and fluorescence microscopy. Colocalization of GFP with α-smooth muscle actin (α-SMA) or vimentin was examined. GFP mRNA levels were tested for correlation with endogenous collagen α1(I) mRNA. Results: Males were more susceptible to DSS-induced disease and mortality than females. In FVB-N mice one DSS cycle induced transient mucosal inflammation and fibrosis that resolved by 7 days of recovery. Two DSS cycles induced transmural inflammation and fibrosis in a subset of FVB-N mice but overall, did not yield more consistent, severe or sustained fibrosis. In C57BL6 mice, procollagen α1(I)-GFP reporter was activated at the end of DSS1 and through DSS+7 with more dramatic and transmural activation at DSS2 through DSS2+7, and in TNBS treated mice. In DSS and TNBS models GFP reporter expression localized to vimentin+ cells and much fewer α-SMA+ cells. GFP mRNA strongly correlated with collagen α1(I) mRNA. Conclusions: One DSS cycle in FVB-N mice provides a model to study mucosal injury and subsequent mucosal healing. The procollagen α1(I)-GFP

transgenic provides a useful model to study activation of a gene encoding a major extracellular matrix protein during acute or chronic experimental intestinal inflammation and fibrosis.